SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS
2004

YEAR 12

HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK # 3

Mathematics Extension 1

General Instructions Total Marks - 66

¢  Working time — 90 minutes. o Attempt all questions

¢ Reading Time — 5 minutes. e All questions are of equal value

e  Write using black or blue pen. ¢ Return your answers in 3 booklets,

e Board approved calculators may one for each section. Each booklet
be used. must show your student number.

¢ All necessary working should be
shown in every question if full marks
are to be awarded.

e Marks may not be awarded for messy or
badly arranged work

Examiner: Mr R Dowdell
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NOTE: Inx = log, x
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Section A:

Question 1: (11 marks) Marks

2
dx
(a) Evaluate I —_—
oV16— x° 2

(b) Evaluate

lim  sin3x
x—0 4x

@

lim  sin3x

(i)

x—0 sin7x

dx

xy/1=(Inx)? ' 2

(c) Use the substitution # =1nx to find I

(d) Differentiate log,(sin’ x), writing your answer in simplest form.

(e) Differentiate with respect to x, (tan™' x)°.
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Question 2: (11 marks)

Marks
(a) (i) Write down the domain and range of y = sin™" (sinx).
(i) Draw a neat sketch of y =sin™ (sinx). 3
. — dy 1
(b) Given that y = sin (\/; ), show that — = — .
dx sin2y 3
(©) Show that the derivative of xtanx—In(secx) is xsec’x.
n
Hence, or otherwise, evaluate j xsec’ x dx. 3
0
oo dy
(d) If y=10", find — when x = 1.
dx 2
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Section B:
Question 3: (11 marks) START A NEW BOOKLET Marks

(a) Consider the function y = 4sin(x +7[), % <x < 4?” .

(i) Find the inverse function of y, and write down its domain. 4

(i)  Sketch the inverse function of y.

(b) (i) On the same axes, draw the graphs of y =tan™'x and y =cos™ x,
showing the important features. Mark the point P where the curves
intersect.
5
(ii) Show that, if tan™' x = cos™ x, then x* +x* —1=0. Hence, find the
coordinates of P, correct to 2 decimal places.
(¢)  Show that tan™ 1 +tan™ 317
4 5) 4 2
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Question 4: (11 marks)

Marks
(a) (i) Draw a neat sketch of y = cos™' x. State its domain and range.
(i)  Shade the area bounded by y =cos™ x and the x and y axes on your
diagram. 4
(iii)  Calculate the area of the region specified in (ii).
(b) Differentiate y = loge[(le)zj . Write your answer in simplest form. )
P
(©) The rate of change of temperature T °, of an object is given by the equation
ar = k(T —16) degrees per minute, k a constant.
(i) Show that the function T =16 + Pe’ , where P is a constant and 7 the
time in minutes, satisfies the equation.
(i) Ifinitially 7 =0 and after 10 minutes 7' =12, find the values of P 5

and k.
(iii))  Find the temperature of the object after 15 minutes.

(iv)  Sketch the graph of T as a function of ¢ and describe its behaviour as ¢
continues to increase.
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Section C:
Question 5: (11 marks) START A NEW BOOKLET Marks

(a) It is known that Inx +sinx = 0 has a root close to x =0-5. Use one
application of Newton's method to obtain a better approximation (to 2
decimal places).

(b) The acceleration of a particle P is given by the equation X = 8x(x* +1) ms™,

where x is the displacement of P from the origin in metres after ¢ seconds,
with movement being in a straight line.

Initially the particle is projected from the origin with a velocity of 2 ms™.

(i) Show that the velocity of the particle can be expressed as
v=2(x"+1). 6

(i) Hence, show that the equation describing the displacement of the
particle at time 7 is given by x = tan2¢.

(iii) Determine the velocity of the particle at time S seconds.

(c) The arc of the curve y =sin~' x between x =0 and x =1 is rotated about

the x axis. Use Simpson's Rule with three function values to estimate the
volume of the solid formed.
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Question 6: (11 marks)

Marks

(a) The velocity v ms? of a particle moving in simple harmonic motion along the
x axis is given by the expression v’ = 28 +24x —4x>.

@
(i)
(iii)
(iv)
v)

Between which two points is the particle oscillating?

What is the amplitude of the motion?

Find the acceleration in terms of x. 6
Find the period of the oscillation.

If the particle starts from the point furthest to the right, find the
displacement in terms of 7.

(b) A stone is thrown from the top of a vertical cliff over the water of a lake. The
height of the cliff is 8 metres above the level of the water, the initial speed of

the stone is 10 ms™ and the angle of projection is 6 = tan™' (i) above the

horizontal.

The equations of motion of the stone, with air resistance neglected, are X = 0
and y=—-g.

®

(i)

By taking the origin O as the base of the cliff, show that the 5
horizontal and vertical components of the stone's displacement from
the origin after ¢ seconds are given by x = 8¢ and

y=—%gt2+6t+8.

Hence, or otherwise, calculate the time which elapses before the
stone hits the lake and find the horizontal distance of the point of
contact from the base of the cliff. (Assume g = 10 ms'z.)

End of Paper
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Question 1
2 2 {
1 1 (b) (|) i SIn3x_§I sin3x
(@ ———dx= | ———dx x—o  4X 4x-o 3K
V16— X2 NV 3
0 0 =—x1
x 4
s3] s
4, ==
4
:sin‘1l
2 in3 in3 7
o (i) 1m0 o I0oX, X
—g x-ogn7X x-* 3X SIN7X
3,. sin3x_ 7x
==lim X —
7x-= 3X 9Nn7X
:§X1
7
_3
7
(C) JL
X4/1—(In x)?
Letu=Inx
du_1
dx X
duzldx
X
J dx _J 1 du
Xy1-(Inx)* ) {1-(u)?
=sinu+C
=sin?*(Inx)+C
(d) |Oge(Sin3X) ﬂ:ﬂx%
dx du dx
Let u=sin®x :1x3sin2xcosx
u
%:Bsinzxcosx _ 1 -
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Question 2
@ (@) y=sin’(snx

Domain {x:xOR}

m m
Range {yraisys }
(i)
v =sin™"(sin x)
.

()  y=sin*(Vx)
siny=+/x
sin®y=x

Ox=sin’y

dx .
—=2sinycosy
dy

=sin2y
1
dx sin2y




() (i) y=xtanx-In(secx)

d
Now — Xxtanx

dx
Let u=x v=tan x
Wy Ny
dx dx
Di(xtanx)zuy+v%
dx dx dx
=(x)(sec® x) + (tan x)(2)

=xsec? x+tan x
Now iIn(secx)
dx

Let u=secx

=(cos™x) dy_1
du u

du__ (cosx)?(-sinx)
dx

_sinx
cos® X
=tan Xxsecx

dy_dyxdu

dx du dx

=—xfan xsecx
u

SeCX
=tan X

xtan xsec x

Oy = xtan x—In(secx)
szsec2 X+tan x—tan x
dx

= xsec” X



(0 (d) y =10

(ii) Ixseczxdx:[xtanx—In(secx)]OZ log,, y=log,,10"
lo =xlog,,10
:{I—Ttanz— In(sec’—T)}—{OtanO— I S0 Y=
4 4 4 x=log,, y
T log, y
=12 -In(2)  ={~In(L X=—===
{0102 |~{-n0) oo
77
=2 Iny2 X= xlo
4 log, 10 %Y
:E—%Inz xlog,10=log, y
4 xl0ge10
D - Je
_7m-2In2 y=e
4

0 dy_ log, 10x €%
dx

whenx =1

dy_ log, 10x '
dx

=log,10x10
=10log, 10
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